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An Information-aware Lyapunov-based MPC for autonomous robots
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Abstract— This paper proposes a feedback-feedforward con-
trol scheme that combines the benefits of an online active
sensing control strategy to maximize the information needed for
correctly executing the desired task (the feedforward compo-
nent), with a Lyapunov-based control strategy that guarantees
an asymptotic convergence towards the task itself (the feedback
component). To show the effectiveness of our method, we
consider a unicycle equipped with onboard sensors that has
to perform the classical path following task.

I. INTRODUCTION

In robotics, action, and motion planning [1] are typically
used to accomplish a given task (e.g., reaching a particu-
lar configuration) with stability guarantees (e.g., Lyapunov
stability theory), and/or optimizing a cost of interest (e.g.,
control effort), under different constraints (e.g., on limited
Field-of-View sensors). However, as for humans, the success-
ful generation and execution of a motion plan substantially
depends on the accuracy of the reconstructed surroundings
and (internal) state trajectories that, in a real scenario, are
not assumed directly measurable by on-board sensors but
only estimated by using a nonlinear filter whose performance
depends on the acquired sensory information. Due to non-
linearities, the quality of the sensory information strongly
depends, as for humans, on the actions chosen to perform the
task. This paper proposes a feedback-feedforward strategy
for a robotic system where the feedforward component aims
at maximizing the information collected through the onboard
sensors by using an online active sensing control strategy [2],
while the feedback component guarantees an asymptotic
stability, in the Lyapunov sense, of the desired task. To
quantify the amount of the collected information along the
planned trajectories, the Constructability Gramian (CG) is
used as the guiding metric, while the effective combination of
the feedback/feedforward components is pursued by adopting
a Lyapunov-based Model Predictive Control (LMPC). For
the sake of space, this work shows only some simulation
results obtained by applying our method. Please refer to the
extended version [3] and to the accompanying multimedia
material for further details and simulation results.
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Fig. 1. Feedback-feedforward control scheme that determines at
runtime the optimal feedforward control action that maximizes
the information collected through sensors along the future path
taking into account the feedback control action that guarantees the
asymptotic convergence toward the desired task.

II. PROPOSED METHODOLOGY

The components of the proposed feedback-feedforward
control scheme Fig. 1 are detailed in this section.

A. THE FEEDBACK COMPONENT

Let us consider a time-invariant, input affine nonlinear
system q(t) = f(q(t)) + g(q(t))u(t) where g(t) € R"
is the state of the system, u(t) € R™ its control input
and f(-) and g(-) are the drift vector and the control
vector field, respectively. Let us then consider a positive
definite candidate of Lyapunov V(q(t)), with V(0) = 0
and q(t) = 0 the desired equilibrium. The Lyapunov-based
Control Law u(t) = uyp(g(t)) (LCL in Fig. 1) that makes
q(t) = 0 asymptotically stable is derived by imposing
Vig(t) = LyV(a(t) + LyV(q(t)up(q(t) < 0. The
above control design implicitly assumes that the state of the
nonlinear system ¢(t) is completely known. However, in a
real scenario, the state of the system is usually unknown,
and only an estimate g(t¢) is made available by an observer
which exploits sensory data. As a consequence, the control
inputs % 5(q(t)) are computed on the state estimates, which
of course are affected by uncertainties. For this reason, the
time derivative of V' becomes

V(g(t),a(t)) = LsV(a(t)) + LyV(a(t))ase(@()). (1)

Since an EKF will be adopted as an observer for the state
estimation, we can assume that up to the first order ¢ = g+
g4, with E {€,} = 0 and, assuming that ¢, is the estimation
error and P its covariance matrix returned by the EKF, we
have P = E {sqeqT}. It then follows that the two moments
of (1) depend on the state estimation uncertainty that, hence,
also affect the stability of the equilibrium.

B. THE FEEDFORWARD COMPONENT

Let us consider now the classical Lyapunov-based MPC
described in [4, Chapter 2]. With respect to it we have
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to deal with two major issues. First, only an estimate of
the state q(tx) is available at time ¢, implying that w(¢)
turns to (t). Second, the proposed feedback-feedforward
control scheme assumes that the first step of the MPC
synthesized control law fed to the system is given by @(ty) =
wyr(ty) + Gpp(ty) (see Fig. 1). Moreover, in this active
sensing setting, the cost function introduced in [5] is adopted.
As a consequence, the Information-aware LMPC problem to
be solved at runtime for the feedback-feedforward control
scheme reads as follows:

Problem 1 (Information-aware LMPC) Given the predic-
tion horizon L, the control input u(t), the predicted trajec-
tory of the estimated system q and with initial state q(t)
at time ty, find, Vt € [tg, tr11], the optimal feedforward
control components

wpp =, min  1Ge(=00 ters) )
S.1.
1) q(t) = £@(t) + g@@(t)) (uss(t) +up(@(t)
2) q(t) = q(tx) “)
3) w—up(qt) <upr(t) <a—up(@t) 6
4) LyV(q(te))ass(ty) <0 (6)

where S(A) is the family of piece-wise constant functions
with sampling period A, (3) is the model of the system, which
is used to predict the state evolution starting from the initial
estimated state (4), (5) are the control constraints and (6) is
the stability constraint.

ITI. SIMULATION RESULTS

To prove the effectiveness of our approach, we test it on a
unicycle vehicle that have to perform a path following task.
We compare the results applying the proposed Information-
aware LMPC (dubbed I-LMPC), i.e., feedback-feedforward
controls obtained by the solutions of Problem 1, with: 1) the
results obtained by directly applying the feedback ()
only (LCL) 2) the results obtained by applying the solution
of Problem 2 where the cost function is a task-oriented cost
function (classical LMPC). We perform 100 simulations and
we carry out a statistical analysis in terms of estimation error
and task error by using a Wilcoxon rank sum test with a
significance level of 5%. All the optimization problems are
solved using the CasADi tool in Python and adopting the
direct single shooting method with the ma57 ipopt solver.

A. Path following

The objective is to determine a Lyapunov based con-
trol law such that the vehicle is asymptotically stabilized,
w.l.0.g. on the straight line ¥y = 0. Note that for this task,
the dynamic of y and 6 are not influenced by the one of z. In
the simulations, the unicycle is equipped with a sensor that
measures the range from the path, i.e., h(t) = y(t). Notice
that, the straight line y = 0 is an unobservable path with this
output (@ is not observable). We choose A = 0.05 s, L = 30,
T = 18 s and the initial configuration is go = [5 m, 7 rad]”
with Py diag([0.5%, 0.22]). Moreover, we assume a

normally distributed Gaussian output noise with zero mean
and covariance matrix, R = (.31 while the actuation/process
noise is considered negligible. To conclude, v = 1 m/s and
—7 < wyp +wyp < 7. Fig. 2 shows the mean values
with their standard deviation of both the estimation errors
and the task execution performances and of the smallest
eigenvalue of P~!. For the LCL and the LMPC, the RMS
of estimation errors do not converge to zero and hence the
task is not correctly executed. In addition, for the I-LMPC
case, the uncertainty is smaller than the other two cases most
of the time. Notice that, as soon as the vehicle approaches
the desired path the smallest eigenvalue of P~! reduces,
confirming that the straight line y = 0 is an unobservable
path. Moreover, the Wilcoxon test confirms that there are
statistical differences for all cases, and that our approach
provides the most informative trajectories.
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Fig. 2. Statistical results in terms of average value and standard

deviations for the path following task. The results obtained for the
LCL are plotted in red, for the LMPC in green, for the proposed
I-LMPC in blue.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposed a feedback-feedforward Information-
aware LMPC control scheme that combines the benefits of an
online active sensing control strategy and a Lyapunov-based
control strategy. Future works will deal with the extension
of our methodology to a risk-aware control scheme where
the feedforward component maximize the information on the
surrounding risks while the feedback component is used for
the task execution in a risky environment.

REFERENCES

[1] S. M. LaValle, Planning Algorithms.
2006.

R. Bajcsy, Y. Aloimonos, and J. Tsotsos, “Revisiting active perception,”
Autonomous Robots, vol. 42, no. 2, pp. 177-196, 2018.

O. Napolitano, D. Fontanelli, L. Pallottino, and P. Salaris, “Information-
aware lyapunov-based mpc in a feedback-feedforward control strategy
for autonomous robots,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4765-4772, 2022.

P. Christofides, J. Liu, and M. Pefia, Networked and Distributed Pre-
dictive Control: Methods and Nonlinear Process Network Applications.
Springer, 2011.

P. Salaris, M. Cognetti, R. Spica, and P. Robuffo Giordano, “Online
optimal perception-aware trajectory generation,” IEEE Transactions on
Robotics, vol. 35, no. 6, pp. 1307-1322, 2019.

Cambridge University Press,
(2]
(31

(4]

[3]

66



